
Hi everyone.  My name is Andy; I'll be teaching these programming sections which 

are designed to supplement the 161 lectures.  I'm afraid I'm not nearly as charismatic 

a lecturer as Keith, but that's OK because we'll be spending most of our time coding.  

As a reminder, while I hope these sections will be useful in helping you better 

understand the material, they are completely optional.  Also, the plan is for section to 

be about 50 minutes long, but we do have the room reserved for another hour after 

that, so if you guys are interested, we can use that extra hour to cover additional 

problems.
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As Keith mentioned, this course is designed assuming that you have taken CS106B or 

X beforehand.  What this means for this section is that we're going to assume that 

you're comfortable writing basic programs in C++ and Java, and have at least some 

idea of how to use their standard libraries.  This includes knowing how to use 

templates in C++ or generics in Java.  It's ok if you don't remember how to create 

classes that allow for them; for the most part, we'll only need to be end users of 

templatized library classes.  Also, since section is being held in this computer lab, 

where Linux is what is installed on all the machines, we're going to assume that you 

have or can pick up some basic knowledge of the Linux command line.
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Now, as you know, CS161 is a theory course, so before we jump into this section, we 

might ask, "Why, in a theory class, do we care about coding up the algorithms we 

learn? Isn't that part just mechanical?"  Well, that's a fair question.  After all, as this 

quote by the famed Donald Knuth would suggest, it IS often the case that we'll stop 

after we've successfully discovered our algorithm.

3



See, there's this ideal approach to problem solving that computer science theory 

courses would have you believe.  You're given a problem, which you think about for a 

while until you come up with an idea to solve it.  You then formalize your idea and 

prove its correctness, and then at that point you have an algorithm that you know 

would work if you ever sat down and coded it up.  Everything after that is "just 

engineering".
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But if you were to ask around a bit more, you would find plenty of people who would 

tell you that when you have an idea, you should code it up and see how it works.  

After all, if it works well, you can use it as is and worry about why it works later; and if 

it doesn't work, then your proof wouldn't have gone anywhere anyway.  Once you 

have code that backs up your idea, proving it works is "just math".  Now, this 

shouldn't surprise us that there are these two trains of thought; after all, we're 

computer scientists, and we can think of computer science as living halfway between 

math and engineering.  The thing is, there's something wrong with both of these 

pictures.  Note that in both cases, we have this magic step where we come up with an 

idea for how to solve the problem.  How does this step even work?  Is it inspiration?  I 

think Keith mentioned "beams of light" coming down from above, granting insights to 

algorithmic problems.  If one of you guys found a beam of light that gives you 

answers to the problem set that came out yesterday, let me know, because I really 

want to see that in action.
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Seriously, though, these ideas don't come from nowhere; in fact, when we're trying 

to solve a problem, often we'll have to attack at it from all sides, hoping that some 

direction will allow us to make some progress.  Sometimes we might write some 

experimental code to see if we can discover some patterns in the problem that we 

can exploit.  Other times we'll research similar problems and read through their 

proofs to see if anything there applies to our problem.  All of these parts feed back 

into each other, so even if all we care about is finding a provably correct solution, we 

can still benefit from coding up our ideas.
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So here's what I'm hoping you'll get out of this section.  First, we're going to spend a 

good chunk of time turning the descriptions of algorithms that we come across in 

class into actual runnable code.  Often we'll discover that there are some nasty 

implementation details that we shoved under the rug in the process of our high-level 

description.  We'll also take a look at some algorithms not covered in class.  Next, 

we'll cover some tricks for being able to write what we call "scratch code" quickly and 

easily.  In this section, we're going to focus on using code as a tool for understanding 

the algorithm, so the emphasis will be on how to do so with minimal effort.  We're 

also going to spend some time covering practices that will make our code more 

efficient, even if it's just by a constant factor that would get swallowed up in big-O 

analysis.  And finally, we're going to use some coding experiments to motivate 

refining our theoretical understanding of a problem to better fit what we observe in 

practice.
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Before we get going, let's just briefly mention what we WON'T be covering in this 

section.  We are NOT going to be writing industrial strength code.  That means, for 

example, that we will assume that our input is always well-formed, and we'll handle 

input in a way that's convenient for us, even if it's not scalable.  We're also not going 

to place any focus on coding style, nor are we going to spend time designing our code 

in such a way that we'll be able to plug it into other projects easily.  These are all 

valuable skills, and if you want to pick these skills up, there's a great class here called 

CS108 that will teach them to you.
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All right, now let's go start on the first algorithm we're going to code up.  Since we 

also want to get you folks used to the setup, we're going to choose a pretty basic 

algorithm, and that is matrix multiplication.  Now, I suspect it might have been a 

while since some of you last worked with matrices, so let's go over how matrix 

multiplication is defined.  Remember that a matrix is a two-dimensional table of 

numbers, and if we say that a matrix is m by n, we mean that it has m rows and n 

columns.  In order to multiply two matrices, the number of columns in the first matrix 

has to equal the number of rows in the second matrix.  So let's say we have an m by n 

matrix A, and we want to multiply it with an n by p matrix B.  We'll get an m by p 

matrix C.  Where does each entry come from?  Well, the entry in the ith row and jth

column of matrix C is equal to the dot product of the ith row of A and the jth column 

of B.  What do we mean by a dot product?  We line up the row and column, multiply 

the pairs of entries together, and then add them all up.  Let's run through an example 

on the whiteboard, to make sure we're all on the same page.
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OK, now let's start coding this up.  For every problem we code up in section, I'm going 

to provide a slide that looks like this, specifying what your program will take as input, 

and what it is supposed to produce as output.  Notice that we've placed some 

additional bounds on the problem; for example, the matrices that your program has 

to handle will never be more than 1000 wide or tall.  This is to avoid various gotchas 

that we don't want to focus on in section, such as numeric overflow or running out of 

memory.  This slide, along with the next few slides, are reproduced for your 

convenience in the handout.
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All of our programs will read in from standard input, also known as the keyboard.  

This slide has some basic examples of how you can read from standard in; the top 

half is how you do so in C++, and the bottom half is how you do so in Java.  Some of 

you might notice that this is rather inefficient compared to other tools available in 

these languages, but these tools are easy to code with, so we'll use them for this 

class.
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As for output, we'll always be writing to standard output, also known as the console.  

Again, the top half is C++, and the bottom half is Java.  Note that I've included an 

example for how to print out a floating point number to two decimal places; this will 

come in handy for making our output consistent in spite of roundoff errors.
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Now, something you might not have experienced before if you've taken the systems

core classes here is that we are NOT giving you any starter code today.  You'll be 

writing your code completely from scratch and putting it in a single file.  Remember 

that one of the goals of this section is to enable you to quickly put together some 

code to test your ideas.  Here are the commands you'll need to compile, run, and 

check your program once you're done writing it.  Again, the top half is C++, and the 

bottom half is Java.  Let me take a bit of time to explain these lines.  The first line 

copies all of the data files we've provided for you to your current directory.  The 

second line compiles your code, assuming that you've named your source file to 

match this slide.  The third line executes your program.  Notice that we've used input 

and output redirection for our convenience; using these carets allows us to run our 

program as though the contents of the mmult.in file were typed in from the 

keyboard, and send everything we would have written to the console to the file 

mmult.out instead.  The last line runs a whitespace-insensitive comparison of our 

output to the reference output.  If after running the last line you see nothing printed 

out to the console, the two files match.  If, on the other hand, you see stuff printed 

out, the stuff that's printed out explains the difference between the two files.
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One last slide before I let you guys go code.  Remember that for our purposes, we 

don't need to worry about memory management.  That means you shouldn't worry 

about deleting the things you allocate.  It also means that you C++ coders should 

avoid making pointer soup, because that's never fun to debug.  In fact, if you want to 

get around some of the annoyances of memory management, just preallocate your 

arrays.  We've given you size bounds on the problem, so you could just allocate arrays 

that are large enough to accommodate 1000 by 1000 matrices.  Also, if you find it 

convenient, go ahead and use global variables.  It can be a pain to pass parameters 

like the sizes of the matrices through all of your functions, so it's fine to make those 

values global instead.  That said, remember that you're going to need to debug your 

code, so decomposing your code into reasonable functions and choosing descriptive 

variable names are still useful.  Scratch code is NOT obfuscated code.  All right, I'm 

going to give you guys some time to write your code now.  Remember that you can 

run your code without redirection so that you can type in small inputs to test your 

program.  I'll give you guys until about 2:50 to write up your code.  If you run into any 

problems while debugging, I'll be right here.
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All right, before we break for today, I'd like to tie what we've worked on in with what 

we've been covering in class.  First, let's analyze the runtime of our algorithm.  Our 

matrix C has m times p entries, and computing each entry takes n multiplications and 

n – 1 additions.  This gives us on the order of m times n times p operations.  This is a 

little unwieldy, so let's just focus on the worst case.  Let's let capital N denote the 

largest dimension of our input matrices.  Then our runtime is cubic in N.

15



However, there's an experiment that I'd like to try.  What would happen if we stored 

the transpose of the second matrix, instead of storing it as is?  That is, what would 

happen if we swapped the rows and columns of the second matrix?  Notice that our 

algorithm doesn't really change; all we're doing is swapping a couple indices.  So the 

runtime analysis we just did shouldn't change at all.  But take a look at the difference 

it makes.
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What happened here?  Well, let's take a detour into systems land.  Remember that 

our code is executed on the processor, but the data that it operates on is stored in 

memory.  It turns out that it's pretty expensive to move data all the way from 

memory to our processor; far more expensive, in fact, than performing additions and 

multiplications on the data once it's there.  So what machines do is they keep smaller 

amounts of memory closer to the processor, and they load data from memory in 

batches into the cache.  This means if you access a bunch of elements sequentially in 

an array, the first access is slow because it needs to get fetched from memory, but 

the next several accesses will be much faster because they were in the same block as 

the first access, so they're already in cache.  Now, since our cache is much smaller 

than all of memory, if we try to access data from all different parts of memory, 

eventually our cache will be filled, and we'll need to overwrite or evict something we 

brought in earlier to make room for our next access.  That means when we go back to 

that piece of data that was evicted, it'll be missing from cache, so we'll have to bring 

it in from memory again.  Each time we have to fetch data from memory, we call a 

cache miss.
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OK, so let's see how this observation helps explain our differences in runtime.  In our 

first implementation, every time we compute an entry of matrix C, we need to loop 

over the entries of a column of matrix B.  Let's imagine for a moment that our 

matrices are sized such that each row is as big as one cache block.  Then each entry 

lives in a different cache block, so if we can't store the whole matrix in cache, we'll 

end up incurring a cache miss for every single entry of B.  In our second 

implementation, we loop over the entries of a row of matrix B transpose.  All of the 

entries live in the same cache block, so we'll incur at most one miss for the entire 

row.
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This is a nice observation, but can we turn this intuition for why our second 

implementation runs faster than our first into something a bit more formal?  Well, it 

turns out we can.  Remember that big-O notation is defined in terms of functions; it 

just so happens that most of the time we're talking about functions that represent 

the overall runtime of an algorithm.  What we can do is we can split our runtime into 

two parts: the time spent performing arithmetic operations, and the time spent 

loading things from memory due to cache misses.  For simplicity, we're gonna make a 

couple assumptions about our cache, to make the illustration clearer.  It turns out 

that in this setting, while the number of arithmetic operations remains the same for 

both approaches, our second approach saves an entire factor of N when it comes to 

cache misses.  When it comes to recombining these expressions to compute our 

runtime, we still get order N cubed, but since one cache miss takes up a lot more 

time than one arithmetic operation, we see that the constant factors that the big-O 

notation hides end up being very different.  So here we've used an experiment in 

code to encourage us to go back and take a closer look at the runtime analysis we did 

for our algorithm, factoring in an aspect of computation we wouldn't necessarily have 

considered while just working in theory land.  All right, that's all we're going to 

officially cover for today.  If you have an hour to kill and want some more practice 

coding up algorithms like this, stick around and we'll cover matrix inversion.
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For additional practice: The inverse of a square matrix A is defined to be the (square) 

matrix A^-1 such that when multiplied with A yields the identity matrix, or the matrix 

with 1s on the diagonal and 0s everywhere else.  This isn't a linear algebra course, so 

we're just going to describe the algorithm for computing the inverse of a matrix, and 

leave it up to you to go learn why it works.
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The algorithm we're going to use is called Gaussian elimination.  Given an n by n 

matrix A, we're going to concatenate an n by n identity matrix to the right of A to get 

an n by 2n augmented matrix M.  We then perform row operations like the ones used 

to solve systems of linear equations in order to transform M such that its left half is 

now an identity matrix.  What remains on the right half is our inverse A^-1.  The row 

operations we may use are the following:

1) We may scale a row by multiplying it by any nonzero constant we wish.

2) We may swap 2 rows.

3) We may add (a multiple of) any row to any other row.

Note that using these three rules, we can systematically convert our matrix into the 

desired form by starting from the far left, fixing the entire column, and then moving 

on to the next column.  If we ever end up creating a column on the left half that is all 

zeros, then we can conclude that the matrix A is not actually invertible.

Note that each row operation can be used to fix a single entry in the matrix, provided 

we proceed from left to right.  Each row operation takes order n work to actually 

perform, so fixing all n^2 entries in the matrix takes order n^3 time.
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Here are the specifications for the problem.  Feel free to do some additional reading 

on Gaussian elimination if you need a clearer picture of how this works.
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